Abstract

Cell sorting methods are required in numerous healthcare assays. Although flow cytometry and magnetically actuated sorting are widespread techniques for cell sorting, there is intense research on label-free techniques to reduce the cost and complexity of the process. Among label-free techniques, dielectrophoresis (DEP) offers the capability to separate cells not only on the basis of size but also on their membrane capacitance. This is important because it enables cell discrimination on the basis of specific traits such as viability, identity, fate, and age. StreamingDEP refers to the continuous sorting of cells thanks to the generation of streams of targeted particles by equilibrating the drag and DEP forces acting on targeted particles. In this work, we provide an analytical expression for a streamingDEP number toward enabling the a priori design of DEP devices to agglomerate targeted particles into streams. The nondimensional streamingDEP number (SDN) obtained in this analysis is applied to experiments with 1 μm polystyrene particles and Candida cells. On the basis of these experiments, three characteristic zones are mapped to different values of the SDN: (1) physical capture thanks to DEP for 0 < SDN < 0.6; (2) streaming due to DEP for 0.6 < SDN < 1; (3) elution without experiencing DEP for SDN > 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.