Abstract

Absolute nodal-coordinate formulation is a technique that was developed in 1996 for expressing the large rotation and deformation of a flexible body. It utilizes global slopes without a finite rotation in order to define nodal coordinates. The method has a shortcoming in that the central processing unit time increases because of increases in the degrees of freedom. In particular, when considering the deformation of a cross section, the shortcoming due to the increase in the degrees of freedom becomes clear. Therefore, in the present research, the dimensional equation of motion concerning a two-dimensional shear deformable beam, developed by Omar and Shabana, is converted into a nondimensional equation of motion in order to reduce the central processing unit time. By utilizing an example of a cantilever beam, wherein an exact solution for the static deflection exists, the nondimensional equation of motion was verified. Moreover, by using an example of a free-falling flexible pendulum, the efficiency of the nondimensional equation of motion gained by increasing the number of elements was compared with that of the dimensional equation of motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.