Abstract

AbstractWhether or not coherent magnetospheric whistler waves play important roles in the pitch‐angle scattering of energetic particles is a crucial question in magnetospheric physics. The interaction of a thermal distribution of energetic particles with coherent whistler waves is thus investigated. The distribution is prescribed by the Maxwell‐Jüttner distribution, which is a relativistic generalization of the Maxwell‐Boltzmann distribution. Coherent whistler waves are modeled by circularly polarized waves propagating parallel to the background magnetic field. It is shown that for parameters relevant to magnetospheric chorus, a significant fraction (1–5%) of the energetic particle population undergoes drastic, nondiffusive pitch‐angle scattering by coherent chorus. The scaling of this fraction with the wave amplitude may also explain the association of relativistic microbursts to large‐amplitude chorus. A much improved condition for large pitch‐angle scattering is presented that is related to, but may or may not include the exact resonance condition depending on the particle's initial conditions. The theory reveals a critical mechanism not contained in the widely used second‐order trapping theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.