Abstract

This paper introduces a novel nondestructive wafer scale thin film thickness measurement method by detecting the reflected picosecond ultrasonic wave transmitting between different interfacial layers. Unlike other traditional approaches used for thickness inspection, this method is highly efficient in wafer scale, and even works for opaque material. As a demonstration, we took scandium doped aluminum nitride (AlScN) thin film and related piezoelectric stacking layers (e.g. Molybedenum/AlScN/Molybdenum) as the case study to explain the advantages of this approach. In our experiments, a laser with a wavelength of 515 nm was used to first measure the thickness of (1) a single Molybdenum (Mo) electrode layer in the range of 100-300 nm, and (2) a single AlScN piezoelectric layer in the range of 600-1000 nm. Then, (3) the combined stacking layers were measured. Finally, (4) the thickness of a standard piezoelectric composite structure (Mo/AlScN/Mo) was characterized based on the conclusions and derivation extracted from the aforementioned sets of experiments. This type of standard piezoelectric composite has been widely adopted in a variety of Micro-electromechanical systems (MEMS) devices such as the Piezoelectric Micromachined Ultrasonic Transducer (PMUT), the Film Bulk Acoustic Resonator (FBAR), the Surface Acoustic Wave (SAW) and more. A comparison between measurement data from both in-line and off-line (using Scanning Electron Microscope) methods was conducted. The result from such in situ 8-inch wafer scale measurements was in a good agreement with the SEM data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call