Abstract

In this paper, we describe a nondestructive method of observing changes in the microstructure of optical fibers subjected to CO2 laser irradiation for optical fiber splicing using synchrotron radiation micro-computed tomography (CT). In particular, we evaluated a method of enhancing the contrast between a GeO2-doped optical fiber core and a silica cladding by performing CT observations of the X-ray energy around the Ge-K absorption edge. Specifically, procedures for extracting a GeO2-doped core from a three-dimensional image of optical fibers by the cluster labeling method are proposed and evaluated. The approach enabled us to observe how inclusions at the optical fiber splicing interface influence the optical fiber core structure. We also expect this observation method to be used for improving such aspects of laser processing performance as insertion loss and mechanical strength for recently developed optical fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call