Abstract
A new algorithm using common statistics was proposed for nondestructive near-infrared (near-IR) spectroscopic tablet hardness testing over a range of tablet potencies. The spectral features that allow near-IR tablet hardness testing were evaluated. Cimetidine tablets of 1–20% potency and 1–7 kp hardness were used for the development and testing of a new spectral best-fit algorithm for tablet hardness prediction. Actual tablet hardness values determined via a destructive diametral crushing test were used for construction of calibration models using principal component analysis/principal component regression (PCA/PCR) or the new algorithm. Both methods allowed the prediction of tablet hardness over the range of potencies studied. The spectral best-fit method compared favorably to the multivariate PCA/PCR method, but was easier to develop. The new approach offers advantages over wavelength-based regression models because the calculation of a spectral slope averages out the influence of individual spectral absorbance bands. The ability to generalize the hardness calibration over a range of potencies confirms the robust nature of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.