Abstract

Abstract A nondestructive photoelastic method is presented for characterizing surface microcracks in monocrystalline silicon wafers, calculating the strength of the wafers, and predicting Weibull parameters under various loading conditions. Defects are first classified through thickness infrared photoelastic images using a support vector machine-learning algorithm. Characteristic wafer strength is shown to vary with the angle of applied uniaxial tensile load, showing greater strength when loaded perpendicular to the wire speed direction than when loaded along the wire speed direction. Observed variations in characteristic strength and Weibull shape modulus with applied tensile loading direction stem from the distribution of crack orientations and the bulk stress field acting on the microcracks. Using this method, it is possible to improve manufacturing processes for silicon wafers by rapidly, accurately, and nondestructively characterizing large batches in an automated way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.