Abstract
We present a system for the online, in vitro, nondestructive monitoring of tissue growth within microporous polymer scaffolds. The system is based on measuring the admittance of the sample over a frequency range of 10-200 MHz using an open-ended coaxial probe and impedance analyzer. The sample admittance is related to the sample complex permittivity (CP) by a quasi-static model of the probe's aperture admittance. A modified effective medium approximation is then used to relate the CP to the cell volume fraction. The change of cell volume fraction is used as a measure of tissue growth inside the scaffold. The system detected relative cell concentration differences between microporous polymer scaffolds seeded with 0.4, 0.45, 0.5, and 0.6 x 10(6) pre-osteoblast cells. In addition, the pre-osteoblast proliferation within 56 scaffolds over 14 days was recorded by the system and a concurrent DNA assay. Both techniques produced cell proliferation curves that corresponded to those found in literature. Thus, our data confirmed that the new system can assess relative cell concentration differences in microporous scaffolds enabling online nondestructive tissue growth monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.