Abstract

We describe an X-ray diffraction imaging technique for nondestructive, in situ measurement of die warpage in encapsulated chip packages at acquisition speeds approaching real time. The results were validated on a series of samples with known inbuilt convex die warpage, and the measurement of wafer bow was compared with the results obtained by optical profilometry. We use the technique to demonstrate the impact of elevated temperature on a commercially sourced micro quad flat nonlead chip package and show that the strain becomes locked in at a temperature between 94 °C and 120 °C. Using synchrotron radiation at the Diamond Light Source, warpage maps for the entire 2.2 mm × 2.4 mm × 150-μm Si die were acquired in 50 s, and individual line scans in times as short as 500 ms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.