Abstract

Push-out and pull-out tests are used for destructive evaluation of implant-bone interface strength. Because nondestructive mechanical tests would allow maintenance of an intact interface for subsequent morphological study, we developed such a test to determine the shear modulus of the interface by measuring the shear deformation of a thin layer adjacent to the implant. A polyurethane foam model was used to test the experimental setup on a group of nine cylindrical implants with three different lengths (15-48 mm) and three different diameters (5-9.7 mm). The shear modulus of the interface, as calculated from the pull-out test, was validated against the shear modulus of the foam derived from tensile tests. The two values of shear modulus were well correlated (R2 = 0.8, p < 0.001), thus encouraging further application of the setup for tests of implant-bone interface mechanics. In addition, we also examined the effects of implant length and diameter. The length of the implants had a significant influence on the interface shear modulus (p < 0.05), indicating that comparisons of the variable should only be made of implants with the same length. The length and diameter of the implants were not critical parameters for the ultimate fixation strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.