Abstract

The cellular events underlying various retinopathies are poorly understood but likely involve perturbation of retinal glucose metabolism. Current methods for assessing this metabolism are destructive, thus limiting longitudinal studies. We hypothesize that following an intravitreous injection, the clearance rate of a glucose analogue will be a nondestructive index of retinal glucose transport and metabolism in vivo. First, radiolabeled glucose analogues were injected into the vitreous. After 40 min, the dominant clearance path was posterior via the retina and was consistent with a facilitated transport mechanism. Next, either [6,6-2H2]glucose or 3-deoxy-3-fluoro-D-glucose was injected into the vitreous of rabbit eyes, and the clearance rate of each analogue was determined over 40 min using, respectively, 2H or 19F NMR. These rates were interpreted as a function of the retinal glucose transport and consumption. From the NMR data, the rate of retinal glucose consumption was approximately 16 times slower than the transport of glucose. These data demonstrate that NMR measurements of glucose analogue clearance rate from the vitreous can provide a nondestructive index of retinal glucose transport and consumption in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.