Abstract

Because the leaf area index (LAI) is an essential parameter for understanding the structure and growth status of plant canopies, nondestructive and continuous estimation methods have been required. Recently, an LAI estimation method using the ratio of near-infrared radiation (NIR; 700–1000 nm) to photosynthetically active radiation (PAR; 400–700 nm) (NIRin/PARin) transmitted through a canopy has been proposed. However, because previous studies on this NIRin/PARin-based LAI estimation method are limited to tall plants (e.g., forest and rice canopies), in this study, we applied this method to a short canopy (i.e., spinach) and investigated its validity. NIRin/PARin and three other traditional indices for indirect LAI estimation—relative PPF density (rPPFD), normalized difference vegetation index (NDVI), and simple ratio (SR)—were measured in 25 canopies with different LAI. NIRin/PARin showed better estimation sensitivity (R2 = 0.88) to the observed LAI than the other three indices, particularly when LAI was greater than 3 m2·m−2. In addition, the LAI estimated from NIRin/PARin measured at 10-min intervals in the entire growth period could capture an increasing trend in the measured LAI throughout the entire growth stage (mean absolute error = 0.87 m2·m−2). Errors in long-term LAI estimations may be caused by the sensor location and insufficient data due to unsuitable weather conditions for measuring NIRin/PARin. The current study demonstrates the merits and limitations of the NIRin/PARin-based LAI estimation method applied to low height canopies, thereby contributing to its practical use in horticultural crops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call