Abstract

In order to clarify the applicability of infrared thermography to the nondestructive evaluation of weld defects, an infrared measurement was conducted on the welds with various artificial defects. Two heating methods, a moving gas flame and a Joule effect by electric current flow, were used for the fast and large area inspection with readily interpretable images of defects. Finite element analysis was also used for the theoretical analyses of beat conduction and electric current flow, together with the development of imaging technique for the evaluation of the shape and size of defects. As the results of infrared measurements and theoretical analyses, the selection of heating method and the acquisition of infrared images were important for the clear image and precise measurement of weld defects. As for the clear images, the Joule effect heating was useful for the detection of open-to-the-surface defects, while the moving gas flame heating was available to the inner defect parallel to the surface. It was also clarified that the types of defects were identified by the distribution of high and low temperature regions. In the measurement of defect size, defect edges were evaluated by the positions with maximum temperature gradient in the moving gas flame heating,more » and with minimum second derivative of temperature in the Joule effect heating. The effective images for the precise measurement of defect size were obtained from the ones immediately after current flow in the Joule effect heating, and just before the arrival of gas flame beneath the defect.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call