Abstract

Tensile residual stresses combined with an applied tensile stress can reduce the reliability of steel components. Nondestructive evaluation of residual stress is thus important to avoid unintended fatigue or cracking. Because magnetic hysteresis properties of ferromagnetic materials are sensitive to stress, nondestructive evaluation of residual stress through magnetic properties can be expected. The spatial mapping of local magnetic hysteresis properties becomes possible by using the acoustically stimulated electromagnetic (ASEM) method and the tensile stress dependence of the hysteresis properties has been investigated in steel. It is found that the coercivity H c and the remanent magnetization signal V r monotonically decrease with increasing the tensile stress. In this work, we verified the detection of residual stresses through the ASEM response in a welded steel plate. Tensile stresses are intentionally introduced on the opposite side of the partially welded face by controlling welding temperatures. We found that H c and V r clearly decrease in the welded region, suggesting that the presence of tensile residual stresses is well detected by the hysteresis parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.