Abstract

With the growing intensity of civil usage of the UAV, one of the most important problems is safety. It consists of operational safe use of the UAV in the common air area and reliability of the aerial vehicle construction. Each flying object is subjected to external loads, which influence on it in flight and on the ground. The external loads are mainly caused by aerodynamic, weight and inertia influence, ground reaction force and the power unit [1]. That is why during service, UAV structures are prone to many mechanical and environmental conditions that can damage to composite structures in the form of delamination, fiber breakage, and matrix cracking. Monitoring the level and type of damage to a composite structure is vital to determining the component’s structural integrity and preventing the failure of the structure during flight [2]. Non-destructive testing which has been used so far to identify defects in the aircraft structure made from metallic materials has a quite limited application in the case of composite structures. With the growing use of composites in the aviation industry, a necessity appears to work out a method allowing identification of technological defects and damages appeared in the process of the UAV’s operation. The answer to the appearing demand could be, for instance, the active thermography technique used for the thin wall test of the skin elements of the UAV. The obtained research results bring closer the problem of selection of the quick, well-fitted non-destructive testing method depending on the kind of the diagnosed construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.