Abstract

Composite materials are increasingly used in the wind industries. Damage detection and health monitoring of composite materials are challenging due to the complex internal structure and unique material properties. Digital image correlation (DIC) and acoustic emission (AE) are both used for damage detection in structures. In this work, DIC performs a full-field strain measurement on the surface of the carbon-fiber specimen while AE continuously monitors and records the AE signals generated from specimen subsurface structure failures. These health monitoring techniques are integrated and evaluated in this study to correlate surface strain measurements and acoustic emission measurements on carbon-fiber specimens. The AE measurement results show that there is a correlation between the occurrence of AE events and the timing of complete specimen failure. DIC with a high-speed stereo camera system is also adopted to extract the change in the resonance frequencies and displacement and strain mode shapes of the specimen during experiments in cyclic loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call