Abstract
The morphology of surface features generated by dislocations present at 4H-SiC epitaxial layer surfaces was investigated by forescattered electron detection (FED) inside a conventional scanning electron microscope. Various growth pit morphologies were correlated to dislocation types using molten KOH etching. Specifically, sharp-apex pits and stripe-shaped pits were consistently linked to screw and edge dislocations, respectively. The size and depth of these growth pits were measured by atomic force microscopy (AFM). Tail-like features were observed by FED emanating from sharp-apex pits and verified by Nomarski optical microscopy (NOM). A mechanism is proposed to explain the FED contrast exhibited by these tail-like features. This mechanism relates the nature of step-flow and spiral growth in the wake of a screw dislocation to the surface distortions resulting in such tail-like features. The Burgers vector direction can thus be determined based on a purely morphological analysis of these tail-like features. The results of this study illustrate the various capabilities of FED for surface imaging as compared to AFM and NOM. The potential for utilizing FED to map dislocation-associated growth pits is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.