Abstract

Vis-NIR spectroscopy coupled with chemometric models is frequently used for pear soluble solid content (SSC) prediction. However, the model robustness is challenged by the variations in pear cultivars. This study explored the feasibility of developing universal models for predicting SSC of multiple pear varieties to improve the model's generalizability. The mature fruits of 6 pear cultivars with green skin (Pyrus pyrifolia Nakai cv. ‘Cuiyu’, ‘Sucui No.1’ and ‘Cuiguan’) and brown skin (Pyrus pyrifolia Nakai cv. ‘Hosui’,’Syusui’ and ‘Wakahikari’) were used to establish single-cultivar models and multi-cultivar universal models using convolutional neural network (CNN), partial least square (PLS), and support vector regression (SVR) approaches. Multi-cultivar universal models were built using full spectra and important variables extracted by gradient-weighted class activation mapping (Grad-CAM), respectively. The universal models based on important variables obtained satisfactory performances with RMSEPs of 0.76, 0.59, 0.80, 1.64, 0.98, and 1.03°Brix on 6 cultivars, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call