Abstract

The aim of this study was to assess the applicability of a portable NIR spectroscopy system and chemometric algorithms in intelligently detecting postharvest quality of cherry tomatoes. The postharvest quality of cherry tomatoes was evaluated in terms of firmness, soluble solids content (SSC), and pH, and a portable NIR spectrometer (950–1650 nm) was used to obtain the spectra of cherry tomatoes. Partial least square (PLS), support vector machine (SVM), and extreme learning machine (ELM) were applied to predict the postharvest quality of cherry tomatoes from their spectra. The effects of different preprocessing techniques, including Savitzky–Golay (S-G), multiplicative scattering correction (MSC), and standard normal variate (SNV) on prediction performance were also evaluated. Firmness, SSC and pH values of cherry tomatoes decreased during storage period, based on which the tomato samples could be classified into two distinct clusters. Similarly, cherry tomatoes with different storage time could also be separated by the NIR spectroscopic characteristics. The best prediction accuracy was obtained from ELM algorithms using the raw spectra with Rp2, RMSEP, and RPD values of 0.9666, 0.3141 N, and 5.6118 for firmness; 0.9179, 0.1485%, and 3.6249 for SSC; and 0.8519, 0.0164, and 2.7407 for pH, respectively. Excellent predictions for firmness and SSC (RPD value greater than 3.0), good prediction for pH (RPD value between 2.5 and 3.0) were obtained using ELM model. NIR spectroscopy is capable of intelligently detecting postharvest quality of cherry tomatoes during storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call