Abstract

This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship between the first bending mode frequency and bridge stiffness (characterized as EI product). The results indicated that the forced vibration method has potential for quickly assessing the stiffness of the timber bridge superstructure. However, improvements must be made in the measurement system to correctly identify the first bending mode frequency in bridges in the field. The beam theory model was found to fit the physics of the superstructure of single-span timber bridges and could be used to correlate first bending frequency to global stiffness if appropriate system parameters are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call