Abstract

Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron–electron annihilation line of 18F at 511keV, which is a product of the photonuclear reaction 19F(γ,n)18F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from 45Ti and 34mCl, whereas those from 44Sc and 89Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10–100μgg−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call