Abstract

We consider the classical and quantum-mechanical processes of three-wave interactions in different phase regimes and present numerical calculations for the quantum case, where all three modes are sizably excited from the beginning. These excitations are coherent so that various important phase regimes can be adjusted. In addition, one mode can also be prepared in a squeezed or Kerr state. The classical solutions are well known and are briefly summarized, but certain phase regimes are classically unexplored and we show here that they give interesting and surprising results. In the out-of-phase regime (where the photon numbers do not change in the first order of time) we get, with an initial Kerr state, strongly sub-Poissonian photon statistics in the signal after a short interaction time. This effect is limited by the classically described phase shifts that are present even in the parametric approximation. This nonclassical phenomenon (due to the Kerr state) helps us to understand similar nonclassical effects generated by entangled states of the pump and signal during sum-frequency generation. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.