Abstract

We develop a theoretical model for the nondegenerate nonlinear optical susceptibility of dielectric composite materials containing metal nanoparticles. The model is based on the theory of transient nonlinear response of metal nanoparticles in combination with the effective medium approximation and the discrete dipole approximation. Its validity is confirmed by comparison with a preceding experimental result. Through numerical simulations, we demonstrate that for off-plasmon-resonant pumping the imaginary part of nondegenerate third-order nonlinear susceptibility becomes negative over a wide spectral range of signal. We additionally show the saturation effect of nondegenerate susceptibility depending on pump intensity and wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.