Abstract
This paper deals with the analysis of Hamiltonian Hopf bifurcations in three-degree-of-freedom systems, for which the frequencies of the linearization of the corresponding Hamiltonians are in $$\omega:3:6$$ resonance ( $$\omega=1$$ or $$2$$ ). We obtain the truncated second-order normal form that is not integrable and expressed in terms of the invariants of the reduced phase space. The truncated first-order normal form gives rise to an integrable system that is analyzed using a reduction to a one-degree-of-freedom system. In this paper, some detuning parameters are considered and nondegenerate Hamiltonian Hopf bifurcations are found. To study Hamiltonian Hopf bifurcations, we transform the reduced Hamiltonian into standard form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.