Abstract

The experimentally observed characteristic features of the alpha-relaxation process in glass-forming liquids are the non-Arrhenius behavior of the structural relaxation times and the non-Debye character of the macroscopic relaxation function. The Avramov model in which relaxation is considered as an energy activation process of surmounting random barriers in liquid energy landscape was successfully applied to describe the temperature and pressure dependences of the macroscopic relaxation times or viscosity. In this paper, we consider the dielectric spectrum associated with Avramov model. The asymmetrical broadening of the loss spectra was found to be related directly to dispersion of the energy barrier distribution. However, it turns out that temperature dependence of the spectrum broadening as predicted by the Avromov model is at odds to experimental observation in glass-forming liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.