Abstract

This paper presents Buckley-Leverett type analytical solutions for non-Darcy displacement of two immiscible fluids in linear and radial composite porous media. High velocity or non-Darcy flow commonly occurs in the vicinity of the wellbore because of smaller flowing cross-sectional areas. However, the effect of such non-Darcy flow has been traditionally ignored. To examine the physical behaviour of multiphase immiscible fluids in non-Darcy displacement, an extended Buckley-Leverett type of solution is discussed. There exists a Buckley-Leverett type solution for describing non-Darcy displacement in a linear homogeneous reservoir. This work extends the solution to flow in linear and radial composite flow systems. We present several new Buckley-Leverett type analytical solutions for non-Darcy flow in more complicated flow geometries of linear and radial composite reservoirs, based on non-Darcy flow models of Forchheimer and Barree-Conway. As application examples, we use the analytical solutions to verify numerical simulation results as well as to discuss non-Darcy displacement behaviour. This theory of non-Darcy flow displacement is applied to evaluate the flow behaviour near wellbore areas during CO2 sequestration. The results show how non-Darcy displacement during CO2 injection in linear and radial composite systems is controlled not only by relative permeability, but also by non-Darcy coefficients, characteristic length, injection rates, as well as discontinuities in the saturation profile across the interfaces between adjacent composite flow domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.