Abstract

A numerical investigation is carried out to analyze natural convection heat transfer inside a cavity with a sinusoidal vertical wavy wall and filled with a porous medium. The vertical walls are isothermal while the top and bottom horizontal straight walls are kept adiabatic. The transport equations are solved using the finite element formulation based on the Galerkin method of weighted residuals. The validity of the numerical code used is ascertained by comparing our results with previously published results. The importance of non-Darcian effects on convection in a wavy porous cavity is analyzed in this work. Different flow models for porous media such, as Brinkman-extended Darcy, Forchheimer-extended Darcy, and the generalized flow models, are considered. Results are presented in terms of streamlines, isotherms, and local heat transfer. The implications of Rayleigh number, number of wavy surface undulation and amplitude of the wavy surface on the flow structure and heat transfer characteristics are investigated in detail while the Prandtl number is considered equal to unity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call