Abstract
We propose a quantum repeater architecture that can operate without cryogenics. Each node in our architecture builds on a cell of hot alkali atoms and noble-gas spins that offer an hours-long storage time. Such a cell of hybrid gases is placed in a ring cavity, which allows us to suppress the detrimental four-wave-mixing noise in the system. We investigate the protocol based on a single-photon source made of an ensemble of the same hot alkali atoms. A single photon emitted from the source is either stored in the memory or transmitted to the central station to be detected. We quantify the fidelity and success probability of generating entanglement between two remote ensembles of noble-gas spins by taking into account finite memory efficiency, channel loss, and dark counts in detectors. We describe how the entanglement can be extended to long distances via entanglement swapping operations by retrieving the stored signal. Moreover, we quantify the performance of this proposed repeater architecture in terms of repeater rates and overall entanglement fidelities and compare it to another recently proposed noncryogenic quantum repeater architecture based on nitrogen-vacancy (N-V) centers and optomechanical spin-photon interfaces. As the system requires a relatively simple setup, it is easier to perform multiplexing, which enables achieving rates comparable to the rates of repeaters with N-V centers and optomechanics, while the overall entanglement fidelities of the present scheme are higher than the fidelities of the previous scheme. Our work shows that a scalable long-distance quantum network made of hot hybrid atomic gases is within reach of current technological capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.