Abstract

Given a set of terminal pairs on the external face of an undirected unweighted planar graph, we give a linear-time algorithm for computing the union of non-crossing shortest paths joining each terminal pair, if such paths exist. This allows us to compute distances between each terminal pair, within the same time bound. We also give a novel concept of incremental shortest path subgraph of a planar graph, i.e., a partition of the planar embedding in subregions that preserve distances, that can be of interest itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.