Abstract

We prove that every Stein manifold X of dimension n admits [(n+1)/2] holomorphic functions with pointwise independent differentials, and this number is maximal for every n. In particular, X admits a holomorphic function without critical points; this extends a result of Gunning and Narasimhan from 1967 who constructed such functions on open Riemann surfaces. Furthermore, every surjective complex vector bundle map from the tangent bundle TX onto the trivial bundle of rank q < n=dim X is homotopic to the differential of a holomorphic submersion of X to C^q. It follows that every complex subbundle E in the tangent bundle TX with trivial quotient bundle TX/E is homotopic to the tangent bundle of a holomorphic foliation of X. If X is parallelizable, it admits a submersion to C^{n-1} and nonsingular holomorphic foliations of any dimension; the question whether such X also admits a submersion (=immersion) in C^n remains open. Our proof involves a blend of techniques (holomorphic automorphisms of Euclidean spaces, solvability of the di-bar equation with uniform estimates, Thom's jet transversality theorem, Gromov's convex integration method). A result of possible independent interest is a lemma on compositional splitting of biholomorphic mappings close to the identity (Theorem 4.1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call