Abstract

The magnitude and nature of interactions between small aromatic systems (benzene and naphthalene) and various single-wall carbon nanotubes are examined by MP2 theory. π−π stacking configurations are more strongly bound than CH---π analogues. There is a small preference for placement of the aromatic directly above a C═C bond center in the nanotube. All of these complexes are dominated by dispersion forces. Mobility of adsorbed benzene on the tube surface is considered in terms of rotating, tilting, and sliding. As noted previously for covalent modification of nanotubes, the computationally efficient same level different basis set protocol is reliable for studying noncovalent interactions. Previously reported DFT (LDA or GGA) binding energies for π−π stacking arrangements are underestimated, whereas dispersion-corrected methods overestimate these binding energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.