Abstract

Repifermin, a truncated form of fibroblast growth factor-10 (FGF-10) also known as keratinocyte growth factor-2 (KGF-2), is a heparin-binding protein with potent regenerative properties. The protein unfolds and aggregates at relatively low temperature (~37 °C). Electrostatic interactions between polyanions and several FGFs have been reported to enhance the thermal stability of these proteins. Polyethylene glycol (PEG) was grafted to the polyanions pentosan polysulfate (PPS) and dextran sulfate (DS) as an alternative means to stabilize and noncovalently PEGylate KGF-2. Physical characteristics of KGF-2:polyanion-PEG complexes were examined using a variety of methods including circular dichroism (CD), intrinsic tryptophan fluorescence, differential scanning calorimetry, and dynamic light scattering. When compared to KGF-2 alone, subtle changes in CD spectra and fluorescence emission maxima were found when KGF-2 was formulated with the synthetic PEG-polyanions. Highly PEGylated polyanions (DS-PEG5) did not bind KGF-2 as well as conjugates with fewer PEG chains. The molecular weight of PEG did not have a noticeable effect on KGF-2 binding to the various PEG-polyanion conjugates. At optimal molar ratios, PPS-PEG and DS-PEG conjugates were able to stabilize KGF-2 by increasing the melting temperature by approximately 9-17 °C. Thus, polyanion-PEG conjugates improved the stability of KGF-2 and also offered a new electrostatic PEGylation scheme that may be extrapolated to other heparin-binding proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.