Abstract

Zinc anodes of zinc metal batteries suffer from unsatisfactory plating/striping reversibility due to interfacial parasitic reactions and poor Zn2+ mass transfer kinetics. Herein, methoxy polyethylene glycol-phosphate (mPEG-P) is introduced as an electrolyte additive to achieve long anti-calendar aging and high-rate capabilities. The polyanionic of mPEG-P self-assembles via noncovalent-interactions on electrode surface to form polyether-based cation channels and in situ organic-inorganic hybrid solid electrolyte interface layer, which ensure rapid Zn2+ mass transfer and suppresses interfacial parasitic reactions, realizing outstanding cycling/calendar aging stability. As a result, the Zn//Zn symmetric cells with mPEG-P present long lifespans over 9000 and 2500 cycles at ultrahigh current densities of 120 and 200mA cm-2, respectively. Besides, the coulombic efficiency (CE) of the Zn//Cu cell with mPEG-P additive (88.21%) is much higher than that of the cell (36.4%) at the initial cycle after the 15-day calendar aging treatment, presenting excellent anti-static corrosion performance. Furthermore, after 20-day aging, the Zn//MnO2 cell exhibits a superior capacity retention of 89% compared with that of the cell without mPEG-P (28%) after 150 cycles. This study provides a promising avenue for boosting the development of high efficiency and durable metallic zinc based stationary energy storage system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.