Abstract
Exploitation of noncovalent interactions for recognition of an organic substrate has received much attention for the design of metal catalysts in organic synthesis. The CH–π interaction is especially of interest for molecular recognition because both the C–H bonds and the π electrons are fundamental properties of organic molecules. However, because of their weak nature, these interactions have been less utilized for the control of organic reactions. We show here that the CH–π interaction can be used to kinetically accelerate catalytic C–H activation of arenes by directly recognizing the π-electrons of the arene substrates with a spirobipyridine ligand. Computation and a ligand kinetic isotope effect study provide evidence for the CH–π interaction between the ligand backbone and the arene substrate. The rational exploitation of weak noncovalent interactions between the ligand and the substrate will open new avenues for ligand design in catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.