Abstract

We investigate the thermally induced cyclization of 1,2-bis(2-phenylethynyl)benzene on Au(111) using scanning tunneling microscopy and computer simulations. Cyclization of sterically hindered enediynes is known to proceed via two competing mechanisms in solution: a classic C(1)-C(6) (Bergman) or a C(1)-C(5) cyclization pathway. On Au(111), we find that the C(1)-C(5) cyclization is suppressed and that the C(1)-C(6) cyclization yields a highly strained bicyclic olefin whose surface chemistry was hitherto unknown. The C(1)-C(6) product self-assembles into discrete noncovalently bound dimers on the surface. The reaction mechanism and driving forces behind noncovalent association are discussed in light of density functional theory calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.