Abstract

A new method for the synthesis of associates of cyclodextrins (CDs) of the columnar type consisting of the precipitation of CDs from aqueous solutions into acetone at lowered temperatures is developed. It is shown that columnar structures exist in both a crystalline state and in aqueous solutions. Hydrodynamic radii and molecular masses of noncovalent columnar structures (NCSs) in aqueous solutions are determined by the dynamic and static light scattering methods. The degree of association of noncovalent columnar polymers is ∼40. It is revealed the NCS associates based on β-CD are stable and their hydrodynamic radius Rh is equal to 100 ± 10 nm. The kinetics of interactions of initial β-CD and NCS with poly(propylene oxide) (PPO) is studied. The pattern of kinetic curves of Rh growth upon interaction between NCS and PPO indicates that the aggregation of the particles of polymer inclusion complex proceeds in the regime of reaction-limited cluster-cluster aggregation. Kinetic curves describing the interaction processes between β-cyclodextrin and PPO are characterized by the presence of induction period t0. At t > t0, Rh ∞ t0.56 which is typical for the diffusion-limited cluster-cluster aggregation. Schemes of the formation of polymer inclusion complexes between initial β-CD or NCS and poly(propylene oxide) are proposed. Comparison of kinetic data on the complexation of β-CD in solution in the form of associates of two types with PPO demonstrates that columnar forms of associates are reactive species acting as macroreceptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call