Abstract

The pairing of TFH3 with a TH2 CH3 - anion, where T represents tetrel atoms C, Si, Ge, Sn, Pb, results in a strong direct interaction between the two T atoms. The interaction energy is sensitive to the nature of the two T atoms but can be as large as 90 kcal/mol. The noncovalent bond strength rises quickly as the basic T atom of the anion becomes smaller, or as the Lewis acid T grows larger, although there is less sensitivity to the latter atom. The electrostatic component makes up some 55-70 % of the total attraction energy. This term is well accounted for by simple combination of the maximum and minimum values of the molecular electrostatic potential of the Lewis acid and base units, respectively. The complexation induces a rearrangement in the TFH3 molecule from tetrahedral to trigonal pyramidal. The associated deformation energy reduces the exothermicity of the complexation reaction. Electron density shift patterns reveal a density loss on the basic T atom, along with accompanying increases on the acidic T and its attached F atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.