Abstract

In current studies of noncovalent interactions of polycyclic aromatic hydrocarbons (PAHs) with genetic units, the impact of such interactions on gene transfer has not been explored. In this study, we examined the association of some widely occurring PAHs (phenanthrene, pyrene, benzo[g,h,i]perylene, and other congeners) with antibiotic resistant plasmids (pUC19). Small molecular PAHs (e.g., phenanthrene) bind effectively with plasmids to form a loosely clew-like plasmid-PAH complex (16.5-49.5 nm), resulting in reduced transformation of ampicillin resistance gene (Ampr). The in vitro transcription analysis demonstrated that reduced transformation of Ampr in plasmids results from the PAH-inhibited Ampr transcription to RNA. Fluorescence microtitration coupled with Fourier transform infrared spectroscopy (FTIR) and theoretical interaction models showed that adenine in plasmid has a stronger capacity to sequester small Phen and Pyre molecules via a π-π attraction. Changes in Gibbs free energy (ΔG) suggest that the CT-PAH model reliably depicts the plasmid-PAH interaction through a noncovalently physical sorption mechanism. Considering the wide occurrence of PAHs and antibiotic resistant genes (ARGs) in the environment, our findings suggest that small-sized PAHs can well affect the behavior of ARGs via above-described noncovalent interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.