Abstract

BackgroundRecent studies suggest that radiation-induced injuries to the hippocampus play important roles in compromising neurocognitive functioning for patients with brain tumors and it could be important to spare the hippocampus using modern planning methods for patients with craniopharyngiomas. As bilateral hippocampus are located on the same level as the planning target volume (PTV) in patients with craniopharyngioma, it seems possible to reduce doses to hippocampus using non-coplanar beams. While the use of non-coplanar beams in volumetric-modulated arc therapy (VMAT) of malignant intracranial tumors has recently been reported, no dosimetric comparison has yet been made between VMAT using non-coplanar arcs (ncVMAT) and VMAT employing only coplanar arcs (coVMAT) among patients with craniopharyngiomas. We performed a planning study comparing dose distributions to the PTV, hippocampus, and other organs at risk (OAR) of dynamic conformal arc therapy (DCAT), coVMAT, and ncVMAT.MethodsDCAT, coVMAT, and ncVMAT plans were created for 10 patients with craniopharyngiomas. The prescription dose was 52.2 Gy in 29 fractions, and 99 % of each PTV was covered by 90 % of the prescribed dose. The maximum dose was held below 107 % of the prescribed dose. CoVMAT and ncVMAT plans were formulated to satisfy the following criteria: the doses to the hippocampus were minimized, and the doses to the OAR were similar to or lower than those of DCAT.ResultsThe mean equivalent doses in 2-Gy fractions to 40 % of the volumes of the bilateral hippocampus [EQD2(40%hippos)] were 15.4/10.8/6.5 Gy for DCAT/coVMAT/ncVMAT, respectively. The EQD2(40%hippos) for ncVMAT were <7.3 Gy, which is the threshold predicting cognitive impairment, as defined by Gondi et al.. The mean doses to normal brain tissue and the conformity indices were similar for the three plans, and the homogeneity indices were significantly better for coVMAT and ncVMAT compared with DCAT.ConclusionsNcVMAT is more appropriate than DCAT and coVMAT for patients with craniopharyngiomas. NcVMAT significantly reduces radiation doses to the bilateral hippocampus (to 50 % that of the DCAT) without increasing the doses to normal brain tissue and other OAR.Electronic supplementary materialThe online version of this article (doi:10.1186/s13014-016-0659-x) contains supplementary material, which is available to authorized users.

Highlights

  • Recent studies suggest that radiation-induced injuries to the hippocampus play important roles in compromising neurocognitive functioning for patients with brain tumors and it could be important to spare the hippocampus using modern planning methods for patients with craniopharyngiomas

  • NcVMAT is more appropriate than dynamic conformal arc therapy (DCAT) and volumetric-modulated arc therapy employing only coplanar arcs (coVMAT) for patients with craniopharyngiomas

  • We found no significant difference among the three techniques in the RTOG-conformity index (CI), Ian Paddick’s conformity index (IP-CI), or the mean planning target volume (PTV) dose

Read more

Summary

Introduction

Recent studies suggest that radiation-induced injuries to the hippocampus play important roles in compromising neurocognitive functioning for patients with brain tumors and it could be important to spare the hippocampus using modern planning methods for patients with craniopharyngiomas. As bilateral hippocampus are located on the same level as the planning target volume (PTV) in patients with craniopharyngioma, it seems possible to reduce doses to hippocampus using non-coplanar beams. Cognitive decline is a recognized late effect of cranial irradiation, and it is suspected that radiation-induced injuries to the hippocampus are major contributors to neurocognitive deficits in patients with brain tumors [8,9,10,11]. The hippocampus is located close to the planning target volumes (PTVs) for craniopharyngiomas, and it could be important to spare the hippocampus using modern planning methods

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.