Abstract
During folding of many proteins, molten globules are formed. These partially folded forms of proteins have a substantial amount of secondary structure but lack virtually all tertiary side-chain packing characteristic of native structures. Molten globules are ensembles of interconverting conformers and are prone to aggregation, which can have detrimental effects on organisms. Consequently, molten globules attract considerable attention. The molten globule that is observed during folding of flavodoxin from Azotobacter vinelandii is a kinetically off-pathway species, as it has to unfold before the native state of the protein can be formed. This intermediate contains helices and can be populated at equilibrium using guanidinium hydrochloride as denaturant, allowing the use of NMR spectroscopy to follow molten globule formation at the residue level. Here, we track changes in chemical shifts of backbone amides, as well as disappearance of resonances of unfolded apoflavodoxin, upon decreasing denaturant concentration. Analysis of the data shows that structure formation within virtually all parts of the unfolded protein precedes folding to the molten globule state. This folding transition is noncooperative and involves a series of distinct transitions. Four structured elements in unfolded apoflavodoxin transiently interact and subsequently form the ordered core of the molten globule. Although hydrophobic, tryptophan side chains are not involved in the latter process. This ordered core is gradually extended upon decreasing denaturant concentration, but part of apoflavodoxin's molten globule remains random coil in the denaturant range investigated. The results presented here, together with those reported on the molten globule of alpha-lactalbumin, show that helical molten globules apparently fold in a noncooperative manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.