Abstract
We estimate $n$ phases (angles) from noisy pairwise relative phase measurements. The task is modeled as a nonconvex least-squares optimization problem. It was recently shown that this problem can be solved in polynomial time via convex relaxation, under some conditions on the noise. In this paper, under similar but more restrictive conditions, we show that a modified version of the power method converges to the global optimum. This is simpler and (empirically) faster than convex approaches. Empirically, they both succeed in the same regime. Further analysis shows that, in the same noise regime as previously studied, second-order necessary optimality conditions for this quadratically constrained quadratic program are also sufficient, despite nonconvexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.