Abstract

This study provided a non-convex penalized estimation procedure via Smoothed Clipped Absolute Deviation (SCAD) and Minimax Concave Penalty (MCP) for count data responses to checkmate the problem of covariates exceeding the sample size . The Generalized Linear Model (GLM) approach was adopted in obtaining the penalized functions needed by the MCP and SCAD non-convex penalizations of Binomial, Poisson and Negative-Binomial related count responses regression. A case study of the colorectal cancer with six (6) covariates against sample size of five (5) was subjected to the non-convex penalized estimation of the three distributions. It was revealed that the non-convex penalization of Binomial regression via MCP and SCAD best explained four un-penalized covariates needed in determining whether surgical or therapy ideal for treating the turmoil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.