Abstract

In this paper, we consider the robust tensor completion problem for recovering a low-rank tensor from limited samples and sparsely corrupted observations, especially by impulse noise. A convex relaxation of this problem is to minimize a weighted combination of tubal nuclear norm and the $$\ell _1$$ -norm data fidelity term. However, the $$\ell _1$$ -norm may yield biased estimators and fail to achieve the best estimation performance. To overcome this disadvantage, we propose and develop a nonconvex model, which minimizes a weighted combination of tubal nuclear norm, the $$\ell _1$$ -norm data fidelity term, and a concave smooth correction term. Further, we present a Gauss–Seidel difference of convex functions algorithm (GS-DCA) to solve the resulting optimization model by using a linearization technique. We prove that the iteration sequence generated by GS-DCA converges to the critical point of the proposed model. Furthermore, we propose an extrapolation technique of GS-DCA to improve the performance of the GS-DCA. Numerical experiments for color images, hyperspectral images, magnetic resonance imaging images and videos demonstrate that the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.