Abstract

Dynamic spectrum access is a promising technique designed to meet the challenge of rapidly growing demands for broadband access in cognitive radio networks. By utilizing the allocated spectrum, cognitive radio devices can provide high throughput and low latency communications. This paper introduces an efficient dynamic spectrum allocation algorithm in cognitive radio networks based on the network utility maximization framework. The objective function in this optimization problem is always nonconvex, which makes the problem difficult to solve. Prior works on network resource optimization always transformed the nonconvex optimization problem into a convex one under some strict assumptions, which do not meet the actual networks. We solve the nonconvex optimization problem directly using an improved particle swarm optimization (PSO) method. Simulated annealing (SA), combined with PSO to form the PSOSA algorithm, overcomes the inherent defects and disadvantages of these two individual components. Simulations show that the proposed solution achieves significant throughput compared with existing approaches, and it is efficient in solving the nonconvex optimization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.