Abstract
The paper deals with the well posedness of a class of ordinary differential equations. The vector field depends on the solution to a scalar conservation law, whose flux function is assumed to have a single inflection point (from whence ‘nonconvex’ is derived). Filippov solutions to the ordinary differential equations are considered, and Hölder continuous dependence on the initial data is proved. The motivation for the problem is a model of traffic flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.