Abstract

Digital Image Correlation (DIC) is a non-contacting, camera-based technique that calculates full-field displacements and strains by comparing digital images taken before and after an object is deformed. During a vibration-based fatigue test, DIC has an advantage over strain gages in that it is non-contacting and does not accumulate damage during the test. In this work, DIC was implemented to build strain-velocity calibration curves as an alternative to strain gages. First, a curve fit was applied to DIC displacements and strains along the free edge of the plate using an approximate solution for the mode shape of a cantilevered plate. In total, the curve fits were applied to three sets of DIC data: (i) the raw strains calculated with DIC; (ii) the in-plane U-displacements from which the raw DIC strains were computed; and (iii) the out-of-plane W-displacements observed in the direction of motion. Second, classical plate theory was used to calculate strains by taking derivatives of each of the applied curve fits. Third, the peak strains from each curve fit were used to build the strain-velocity calibration curves. Further, a Monte Carlo Method uncertainty analysis was performed to estimate the uncertainty of the curve fitted DIC and strain gage measurements. Of the three curve-fits, the DIC strains derived from the out-of-plane displacements provided the most precise measurements relative to a strain gage at all excitation levels used to build the calibration curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call