Abstract

Sleep quality, which is an undervalued health issue that affects well-being and daily lives, is checked through the polysomnography (PSG), considered as the gold standard for determining sleep stages. Due to the obtrusiveness of its sensor attachments, recent sleep stage classification algorithms using noninvasive sensors have been developed and commercialized. However, the newly developed devices and algorithms used in the previous studies have lacked the detection of non-rapid eye movement and rapid eye movement sleep, which are known to be correlated with the development of sleep disorders, cardiovascular disease, metabolic disease, and neurodegeneration. We devise a novel approach to employ ensemble of deep neural network and random forest for the performance of noncontact sleep stage classification. Notably, this paper is designed based on the PSG data of sleep-disordered patients, which were received and certified by professionals at Hanyang University Hospital. The efficiency of the proposed algorithm is highlighted by contrasting sleep stage classification performance with previously proposed methods and a commercialized sleep monitoring device called ResMed S+. The proposed algorithm was assessed with random patients following gold-standard measurement schemes (PSG examination), and results show a promising novel approach for determining sleep stages in an economical and unobtrusive manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.