Abstract
Quality assurance monitoring is of great importance in the pharmaceutical industry for the reason that if defects such as coating layer irregularities, internal cracks, and delamination are present in a drug tablet, the desired dose delivery and bioavailability can be compromised. The U.S. Food and Drug Administration (FDA) established the Process Analytical Technology (PAT) initiative, in order to ensure efficient quality monitoring at each stage of the manufacturing process by the integration of analysis systems into the evaluation procedure. Improving consistency and predictability of tablet action by improving quality and uniformity of tablet coatings as well as ensuring core integrity is required. An ideal technique for quality monitoring would be noninvasive, nondestructive, have a short measurement time, intrinsically safe, and relatively inexpensive. In the proposed acoustic system, a pulsed laser is utilized to generate noncontact mechanical excitations and interferometric detection of transient vibrations of the drug tablets is employed for sensing. Two novel methods to excite vibrational modes in drug tablets are developed and employed: (i) a vibration plate excited by a pulsed-laser and (ii) pulsed laser-induced plasma generated shockwave expansion. Damage in coat and/or core of a tablet weakens its mechanical stiffness and, consequently, affects its acoustic response to an external dynamic force field. From the analysis of frequency spectra and the time-frequency spectrograms obtained under both mechanisms, it can be concluded that defective tablets can be effectively differentiated from the defect-free ones and the proposed proof-of-concept techniques have potential to provide a technology platform to be used in the greater PAT effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.