Abstract

Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.