Abstract

A novel noncontact method of measuring the electric potential of component cells in photovoltaic (PV) modules is investigated using electrostatic field measurement technology. Experimental results for various kinds of PV cells and modules are presented, and their measurement principle as well as practical factors that affect the measurement results are discussed. It is demonstrated that the DC electric potential of the cells in various crystalline silicon and thin-film PV modules can be measured indoors through their cover glass or backsheet within a resolution of the output voltage of about 1 cell. The method is also applicable to the outdoor measurement of PV modules under grid-connected operation, and enables various kinds of characterization such as identifying low-performance cells in a PV module and degraded modules in a PV array, and determining the balance of their output current under outdoor operating conditions. Different distributions of electric potential measured from the front and back surfaces are observed for some types of modules. These differences are suggested, by the results of the analysis of experiments and numerical simulations, to originate from the modification of the module’s surface electric potential by slight current flow through its component materials such as the cover glass, ethylene vinyl acetate (EVA), and backsheet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call